Quiz in tutorial on 3rd (Leel9, 20)
CSE525 Lecture 20 M21
Knapsack $(D P)=\left\{\left(V_{1}, w_{1}\right) \cdots\left(V_{n}, w_{n}\right), w\right\}:$ Maximize value of items whose to pal ut is atruost W. $\operatorname{KNAPSACK}(\mathrm{S}=\{(\mathrm{v} 1) \mathrm{w} 1), \ldots(\mathrm{vn}, \mathrm{wn})\}, \mathrm{W}, \mathrm{V})$: Is there a subset of items whose total value is at least V and total weight is at most W ?

PARTITION $(A=\{\mathrm{a} 1 \ldots \mathrm{am}\})$: Can the array be partitioned into two parts with equal sums? $\operatorname{SUBSETSUM}(\mathrm{A}=\{\mathrm{a} 1 \ldots \mathrm{am}\}, \mathrm{T})$: Is there a subset of Awwhose sum is T?
\qquad
OPT $(x):$ Maximize $f(x)$
$D E C O P T(x, k)$: Is maximum $f(x) \geqslant k$? equivalent.
Given algo for OPT $($ AlsOP $) \rightarrow T_{1}(x)$ senall overhead allows unto design algo for DECOPT?

$$
T_{2}(x)
$$

z for Knapsack: $\sum v_{i} \quad$ running time: solve one using the other

$$
\begin{aligned}
f_{w} k & =1 \ldots \text { tivimit }(z) \text { : } \\
& \text { if AlgoDECOPT }\left(x_{k}\right)
\end{aligned}
$$

not a polynomial time reduction

$$
\begin{aligned}
& 1000 \text { number of digits }=4 \text {, number of bits }=9 \quad \quad g_{10}(x)=g_{2}(x) \times g_{10} 2 \\
& x=\left\lceil\left[g_{10}(x)\right]=\left\lceil g_{2}(x)\right\rceil=\theta\left(g_{2}(x)\right)\right. \\
& |x|=\# \text { digits } / \text { bits }=0\left(\lg _{2}(x)\right)=
\end{aligned}
$$

Design a binary search: determine Garget K si DECKNAPSACK (x, k)

$$
O\left(T_{2}(x) * g(z)\right)>O\left(T_{2}(x) * g_{g}\left(I_{i} V_{i}\right)\right)
$$ rectum Yes.

SUBSETSUM \leqslant KNAPSACK:// Knapsack is deft Reduce (A, T) : a general form
? work? $\left\{\left(1, a_{1}\right) \cdots(l, a n\}\right.$ return $\left\{\left(a_{1}, a_{1}\right) \cdots\left(a_{n}, a_{n}\right)\right\}$, with sum $\geqslant T$ \&u ms T of

$$
\begin{aligned}
& w=T \\
& v=n
\end{aligned}
$$

$$
\begin{aligned}
& W=\frac{T}{T} \\
& V=\frac{1}{2}
\end{aligned}
$$

Shas some items with value $\geqslant V$ $\ell(u \sqrt{t}) \leqslant W$

SCHEDULE(homeworks $\{\mathrm{H} 1 \ldots \mathrm{Hn}\}$): decide if all these homeworks can be submitted?
Each $\mathrm{Hi}=($ ai : announce time, si: solving time, di: deadline) // parallel jobs not possible
Reduce from $\operatorname{SUBSETSUM}(\mathrm{X}=\{\mathrm{x} 1 \ldots \mathrm{xn}\}, \mathrm{T})$: Is there a subset of X whose sum is T ?

$$
\text { SUBSETSUM } \leqslant \text { SCHEDULE }
$$

Lemma:(0) Reduction is polynomial time.
(i) If X has a subset Y whose sum is T then there is a way to schedule all Hi's.
(ii) If there is a way to schedule all Hi's then there exists a subset X^{\prime} of X with sum T .

(Not part of Quiz syllabus)
Reduce IS (independent set) to SUBSETSUM !
Lemma: Let Reduce $(\mathrm{G}, \mathrm{k})=(\mathrm{X}, \mathrm{T})$.
(0) Reduction is polynomial time.
(i) If G has a subset V^{\prime} of (exactly/at least) k vertices then X has a subset X^{\prime} of sum T .
(ii) If X has a subset X^{\prime} of sum T then G has a subset V^{\prime} with (exactly/at least) k vertices.

\checkmark one column for every eolge.
$|v|+|E|$ element in s

$e_{0} e_{1} e_{2} e_{3} e_{4} \sqrt{ }$ allones

- put 1 in itch index if e_{i} is an edge from.
 all one

1 The numbers are represented in base b. b is chosen so that sum of any column does not generate any carry in base b. For example $b=|v|+1=6$
\therefore In this example, x_{0} is $(101001)_{6}=7993$.

Notation: (x) e denotes value in the $c^{\text {th }}$ column oof x when written in base c. So $(x)_{1}=L S B$ of x. observe that $\left(y_{c}\right)_{c}=1$.

Proof of \Rightarrow Suppose $v_{1} \cdots v_{k}$ forman independent set in G. Start with $S^{\prime}=\left\{x_{1} \cdots x_{k}\right\}$ [numbers corresponding to the vertices]
Claim: For each column $c=1(L S B), \cdots,|E|+1(M S B), \sum_{x \in S}(x)_{C}=(T)_{e}$
Proof for $C=1$: The sum of LSBs of these $\left(x_{0}\right)$ s add $u p$ to $K(L S B$ of $T)$. since there are K 's in S^{\prime} and $L S B$ of each x is 1 .
Proof for $C 72$: Edge e_{c} has only two vertices. So only two x 's have $\left(x_{c}=1\right.$. Since x^{\prime} s in S^{\prime} form an $I S_{1}$, either exactly one of them is in S^{\prime} or none or none of them are in S^{\prime}. If exactly one of them is in S^{\prime}, then $\Sigma(x) c_{c}=1=(T)_{c}$. If none are in s^{\prime}, include y_{c} in s^{\prime}. Now $\sum_{x \in s^{\prime}}(x)_{c}+(y)_{c}=1\left(\because\left(y_{c}\right)_{c}=1\right){ }^{\text {This }} y_{c}$ This y_{c} does not inter fere with the claim for
other c since $(y d d=0$ if $d \neq c$.

Proof of \Leftarrow : Suppose $S^{\prime}=\left\{x_{i}, \cdots, y_{i}, \cdots\right\}$ is a subset of S whose sum is T.
\therefore Forall column $c \sum_{z \in S^{\prime}}(z)_{c}=(T)_{c}$.
Since $(T)_{1}=k \&\left(y_{i}\right)_{1=0} \&\left(x_{i}\right)_{1}=1, \therefore S^{\prime}$ must have exactly $k \quad x$ s.
Claim: These k x's correspond to k vertices which form an independent set.
Proof: Jake any edge, we the corresponding column be $c \geqslant 2$. Let the endpoints of that edge be x_{i} a x_{j}.
$\therefore \quad\left(x_{i}\right)_{c}=1 \quad \& \quad\left(x_{j}\right)_{c}=1$. Since $\left(T_{c}\right)=1$,
So, S^{\prime} cannot have bott $x_{i} \& x_{j}$.
\therefore Forany edge, both its endpoints are not in S !

